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We solve by dynamical mean field theory a toy model that has a phase diagram strikingly similar to that of
high-Tc superconductors: a bell-shaped superconducting region adjacent to the Mott insulator and a normal
phase that evolves from a conventional Fermi liquid to a pseudogapped semimetal as the Mott transition is
approached. Guided by the physics of the impurity model that is self-consistently solved within dynamical
mean field theory, we introduce an analytical ansatz to model the dynamical behavior across the various phases
which fits the numerical data very accurately. The ansatz is based on the assumption that the wave-function
renormalization, which is very severe, especially in the pseudogap phase close to the Mott transition, is
perfectly canceled by the vertex corrections in the Cooper pairing channel. A remarkable outcome is that a
superconducting state can develop even from a pseudogapped normal state in which there are no low-energy
quasiparticles. The overall physical scenario that emerges, although unraveled in a specific model and in an
infinite-coordination Bethe lattice, can be interpreted in terms of arguments general enough to suggest that it
can be realized in other correlated systems.
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I. INTRODUCTION

How high-temperature superconductivity can emerge out
of a pseudogap metal is one of the standing puzzles posed by
the cuprate superconductors. Indeed, one would expect that a
pseudogapped metal is not ideal for superconductivity
mainly for two reasons: the pseudogap reduces the density of
states at the Fermi level and, more worrisome, it is likely to
cut off the BCS singularity in the Cooper channel. As a con-
sequence, a very strong pairing should be required to turn
such an unconventional metal into a high-Tc superconductor.
Many alternative proposals have been put forward to recon-
cile the existence of a pseudogap in the underdoped normal
phase, which appears at a temperature T�, with the occur-
rence of superconductivity �SC� below a critical temperature
Tc that may become significantly smaller than T� for deeply
underdoped systems.

The simplest explanation is to associate the opening of a
pseudogap with the existence of preformed Cooper pairs
well above Tc.

1–5 This is compatible with the low dimension-
ality and the high critical temperature of the cuprates, which
cooperate to enhance phase fluctuations of the order param-
eter, leading to a wide region where pairs are already formed
yet the region lacks phase coherence. This scenario is experi-
mentally supported by the strong diamagnetic response ob-
served in an extended region above Tc.

6 However, even
though this point of view is certainly reasonable close to Tc,
its application close to the pseudogap temperature scale T�

and for small doping x is definitely more questionable. It is
indeed well established that, while T� increases monotoni-
cally as the doping x→0, both Tc and the superfluid density
vanish. Within the preformed-pair picture, this would corre-
spond to very strong coupling leading to localized pairs in
real space, which can hardly be reconciled with the
momentum-space nodal structure of the pseudogap observed
by angle-resolved photoemission.7

A different point of view interprets the pseudogap as due
primarily to a competing ordered phase8–13 or arising from
fluctuating competing orders among which d-wave supercon-
ductivity prevails below Tc �see Ref. 14 and references
therein�. Although compatible with much experimental evi-
dence, these proposals pose, in our opinion, several theoret-
ical questions. For instance, even if we assume that the
pseudogap phase is a fluctuating mixture of different orders,
we are still left with the question about the nature of the
underlying normal phase unstable to all the above competing
orders. A common belief is that the antiferromagnetic ground
state of the undoped parent compounds15 or another state
very close in energy16 must be interpreted as the ancestor
phase that naturally evolves upon doping into a novel state of
matter14—a fluctuating mixture of pseudogap phases—rather
than into a bona fide normal metal that, below Tc, turns su-
perconducting.

In this work, we do not intend to enter these controversial
issues in the context of cuprates. Rather, we want to unravel
in all its facets a similar phenomenology—the pseudogap
normal phase which turns into a high-temperature
superconductor—that we recently discovered by solving
with dynamical mean field theory17 �DMFT� a two-orbital
Hubbard model inspired by fullerene superconductors.18 We
think that providing an exhaustive analysis of the pseudogap
phenomenon in a strongly correlated model that can be ex-
actly solved, albeit in an infinite-coordination lattice, may
shed light on more realistic models for the cuprates, which
are harder to deal with, both analytically and numerically.
We are going to show that in this two-orbital model, akin to
models for cuprates, superconductivity is the low-
temperature winner among competing phases. In our case,
two of these competing phases are homogeneous and sym-
metry invariant: a conventional Fermi-liquid metal and an
intrinsic pseudogap phase, i.e., a single quantum phase with
zero entropy at T=0. The connection between the supercon-
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ducting and the intrinsic pseudogap phases is intriguing, as
the latter proves to be a fertile ground for superconductivity.
The analysis of the self-energy in the superconducting phase
reveals that the onset of superconductivity gives rise to much
more coherent excitations than in the normal pseudogap
state, where there are no quasiparticles and the self-energy
diverges at low frequency. The way in which this singularity
is regularized in the superconducting phase bears strong
similarities to the effect of nonmagnetic impurities in an
s-wave superconductor, where the processes leading to
anomalies in the normal phase do not cut off the supercon-
ducting instability, or, in other words, they are non-pair-
breaking. Despite the regularization of the low-frequency
anomalies, where the superconducting gap develops, our cor-
related superconductor still presents the pseudogap energy
scale at high frequency, and these two scales have opposite
behavior as the doping goes to zero.

Although we are going to review in some detail the model
and its properties in the following sections, we think is worth
anticipating here some of the main results. In Fig. 1 we
sketch the phase diagram of the model.18 On the x axis we
plot a parameter that controls the distance from a Mott insu-
lating phase, like doping or pressure. The acronyms FL,
NFL, SC, and PG stand for normal Fermi-liquid, non-Fermi-
liquid, superconducting, and normal pseudogap phases, re-
spectively. The temperature scale T− �two branches� identi-
fies the crossovers from the FL and PG phases into the
almost critical NFL region. The latter is not pseudogapped
and it is characterized by incoherent single-particle excita-
tions with dispersion and inverse lifetime controlled by a
single scale T+. The Mott transition occurs when T+=T− on
the pseudogap side of the superconducting region.

The phase diagram Fig. 1 bears striking similarities to that
of cuprates, if we identify the T− branch on the “underdoped”
side with T�. From a purely theoretical point of view, the
diagram closely resembles the quantum-critical-point �QCP�
scenario proposed in many contexts, including cuprates8–10

and heavy-fermion compounds,11–13 as well as the phase dia-
gram of the t-J model for cuprates14,19,20 within the resonat-
ing valence bond �RVB� framework.16 We postpone a critical
comparison with those to the ending section of the paper.

The paper is organized as follows. In Sec. II we introduce
our model and approach. Section III is devoted to the DMFT
phase diagram, while Sec. IV summarizes the information

that we can obtain from the impurity model which corre-
sponds to our lattice model through DMFT. Sections V and
VI introduce modelizations of the self-energy in the normal
and superconducting phases, respectively. Finally, Sec. VII is
dedicated to conclusions, with particular attention to the re-
lation between our results and theoretical proposals for the
cuprates.

II. THE MODEL

The model that we study is a two-orbital Hubbard model
with the Hamiltonian

H = − �
ij

�
a=1

2

�
�

tij�ci,a�
† cj,a� + H.c.�

+
U

2 �
i

�ni − 2�2 − 2J�
i

�Ti,x
2 + Ti,y

2 � , �1�

where ci,a�
† and ci,a� create and annihilate, respectively, one

electron at site i in orbital a=1,2 with spin �, ni=ni,1+ni,2 is
the on-site occupation number, where ni,a=��ci,a�

† ci,a�, and,
finally,

Ti,� =
1

2 �
a,b=1

2

�
�

ci,a�
† �ab

� ci,b� �2�

are orbital pseudospin-1/2 operators, �� ��=x ,y ,z� being the
Pauli matrices. We assume hereafter that the exchange con-
stant J is positive, and hence favors low-spin atomic configu-
rations. This model was introduced in Ref. 18 to mimic an
e � E Jahn-Teller coupling to a local doubly degenerate pho-
non mode that prevails over the conventional Coulomb ex-
change. In this case, the Jahn-Teller coupling leads effec-
tively to inverted Hund’s rules, with the provision that the
phonon frequency is high enough to neglect retardation ef-
fects. The original purpose was to study a simplified model
that shared the same physics of alkali-metal-doped fullerene
superconductors, where pairing is mediated by eight
fivefold-degenerate local vibrational modes, t � H Jahn-
Teller coupled to the threefold degenerate lowest occupied
molecular orbital �LUMO� of C60.

21–23 Apart from a constant
term, the Hamiltonian �1� can be alternatively written as

H = − �
ij

�
a=1

2

�
�

tij�ci,a�
† cj,a� + H.c.� +

U

2 �
i

�
a=1

2

�ni,a − 1�2

+ �
i

J�Si,1 · Si,2 + Vni,1ni,2, �3�

with J�=4J and V=U+J, which also describes two Hubbard
models labeled by the orbital index a=1,2, coupled by an
antiferromagnetic exchange J� and by a strong repulsion V.

The interaction term proportional to J in �1� is easily
shown to generate an attraction that leads to an order param-
eter of s-wave symmetry associated with the operator

�k = ck,1↑
† c−k,2↓

† + c−k,2↑
† ck,1↓

† . �4�

The bare scattering amplitude in this channel is A=−2J, and
it would induce a superconducting instability in the absence
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FIG. 1. �Color online� Sketch of the phase diagram of the model
Eq. �1�. x is a parameter that measures the deviation from the Mott
insulator. FL, NFL, SC, and PG stand for normal Fermi-liquid,
non-Fermi-liquid, superconducting, and normal pseudogap phases,
respectively. T− and T+ are crossover lines; see the text.
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of Coulomb repulsion. The introduction of U weakens the
attraction, leading to A=−2J+U. Therefore, at least in weak
coupling, U ,J�W �W being the noninteracting bandwidth�,
one expects the model to describe a BCS superconductor for
U�2J, and a normal metal for larger repulsion. In principle,
if the noninteracting Fermi surface accidentally has nesting,
other weak-coupling instabilities like, e.g., magnetism can
occur. In our calculation we did not consider such commen-
surate phases, because they are related to specific aspects of
the lattice, and we want to focus on more basic and general
properties. We note that the competition between attraction
and repulsion, namely, between J� and V in �3�, offers the
opportunity to investigate how s-wave superconductivity can
emerge at all in spite of strong correlations. This issue is not
commonly touched in the context of cuprates, where the em-
phasis is mostly put on the appearance of d-wave supercon-
ductivity �whose order parameter exists on the bonds� in the
presence of purely on-site repulsion, while longer-range con-
tributions to the interaction are often ignored.24

Let us move now to the opposite limit of strong repulsion,
U�W, and consider the half-filled case. In this limit the
model is a Mott insulator, each site being occupied by two
electrons that cannot move coherently. When J=0 the model
maps onto an SU�4� Heisenberg model. If the hopping is
restricted to nearest neighbors, the ground state of this model
is dimerized in one dimension,25 while in a two-dimensional
square lattice it is still unclear whether it is a spin liquid or
Néel ordered.26,27 When the attraction is switched on and
J�W2 /U�0, the attractive interaction prevails and two
electrons on each site i lock into the singlet state

1
�2

�ci,1↑
† ci,2↓

† + ci,2↑
† ci,1↓

† ��0� , �5�

stable to the weak intersite superexchange. In this case, the
Mott insulator is nonmagnetic and translationally
invariant—a local version of a valence-bond crystal—
regardless of the structure of the hopping matrix element and
the dimensionality and topology of the lattice. A sufficient
degree of frustration, due to either the lattice topology or the
hopping amplitudes tij, disfavors a magnetic state and makes
it possible for this nonmagnetic phase to survive decreasing
U /W down to the Mott transition, which is in turn pushed to
a finite Uc when frustration eliminates nesting. When this
happens, one should naively expect, as U /W is increased at
fixed J /W�1, first a very narrow BCS superconducting re-
gion for 0�U�2J, followed by a normal metal, which
eventually gives way to a nonmagnetic Mott insulator when
U�Uc�W. Seemingly, doping the nonmagnetic Mott insu-
lator at U�Uc�J should bring a normal metal which, as
doping increases, gets less and less correlated.

This naive expectation, based essentially on the value of
the bare scattering amplitude A=−2J+U in the singlet Coo-
per channel Eq. �4�, turns out to be wrong at least in the two
cases that have been so far considered: �i� an infinite-
coordination Bethe lattice,18 which is exactly solved by
DMFT; �ii� a one-dimensional chain.28 We will briefly men-
tion the latter in the last section, while in what follows we
concentrate mostly on the DMFT results for the Bethe lattice.

In the following we first recall the basic ideas behind
DMFT,17 and our implementation.

DMFT extends the idea of the classical mean field to the
quantum domain: a lattice model is approximately solved by
solving the quantum problem of a single site subject to a
“dynamical Weiss field” that describes the action of the rest
of the lattice sites on the given site �assumed to be equivalent
to any other�. As in classical mean field theory, the mapping
is exact only in infinite-coordination lattices. The effective
action of the local degrees of freedom reads

Seff = �
0

	

d� d��c0��
† ���G0

−1�� − ������
�	 c0	������

+ S0	c0��,c0��
† 
 , �6�

where G0
−1 is the Weiss field, � and 	 are orbital indices, and

� and �� are spin indices. S0 is the local part of the action
and contains all local interaction terms of the lattice Hamil-
tonian. The mean field scheme is closed by imposing
between the Weiss field and the local Green’s function
G��−���, computed by the action �6�, a self-consistency re-
lation that contains the information about the original lattice
model through the noninteracting density of states �DOS�,
For a Bethe lattice with nearest-neighbor hopping and band-
width W, which we consider hereafter, the self-consistency
reads

G0
−1�i
n����

�	 = i
n − E���
�	 −

W2

16
G�i
n����

�	 , �7�

where E is the matrix of the single-particle terms of the
on-site Hamiltonian �chemical potential, magnetic field, hy-
bridization� and G�i
n� is the Fourier transform of the local
Green’s function G������

�	 =−�T�c0�����c0	��
† �0��Sef f

. Equa-
tions �6� and �7� can be viewed as a set of two coupled
equations for G and G0

−1. In practice, one needs to solve �6�
for a given choice of G0

−1 and obtaining G. Using �7� one
finds a new value of G0

−1. The procedure is iterated until
convergence is achieved. It is evident that the computation of
G is the hard part of the calculation. An important observa-
tion is that the effective local theory can be represented as an
impurity model whose hybridization function coincides with
the dynamical Weiss field. In practice, a DMFT calculation
amounts to solving an Anderson impurity model iteratively
in order to self-consistently determine its hybridization func-
tion.

The solution of the impurity model requires either an ap-
proximate numerical method, or an “exact” numerical ap-
proach. In this work we use exact diagonalizaton at T=0,29

which amounts to approximating the continuous bath of the
impurity model by a discrete set of energy levels hybridized
with the impurity. The method has been shown to converge
exponentially as a function of the number Nb of bath levels.
For example, Nb=5 already gives quite reliable results for
the phase diagram and thermodynamic observables of a
single-band Hubbard model. In this work we will use six
bath levels for each orbital, which gives Nb=12 in total. An
important aspect of the exact diagonalization method is the
way in which the continuous bath is approximated. This is
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implemented by minimizing a suitably chosen distance be-
tween two functions. The distance is typically computed on
the imaginary axis on a Matsubara grid corresponding to an

effective temperature 	̃, which is not to be confused with the
physical temperature, always set to T=0. In this work we

typically use 	̃=400 /W, and define a distance that weights
more low frequencies.30 Specifically, we minimize

� = �
n

�G0
−1 − �G0

−1�discrete�

n

�8�

�G0
−1�discrete being the discrete version of the Weiss field, with

the sum extending up to a maximum frequency of order 4U.
Finally, in order to describe the superconducting phase,

the bath includes superconducting terms leading to a Weiss
field with anomalous components. Consequently, the impu-
rity Green’s function has also an anomalous term F�	���
=−�T�c�↑���c	↓�0��, which is used together with G to build

the matrix Ĝ�i
n� in the Nambu-Gor’kov formalism. Seem-
ingly, one defines a matrix Weiss field with diagonal,
G0�i
n�−1, and off-diagonal, F0�i
n�−1, components. The
self-consistency condition �7� can be rewritten in the same
formalism straightforwardly.

III. THE PHASE DIAGRAM IN A BETHE LATTICE

In Fig. 2 we show the DMFT phase diagram of model �1�
at fixed J=0.05 W in a Bethe lattice as a function of doping
and U /W around the Mott transition, Uc�0.87 W.18 The
first remarkable thing to note is the appearance of supercon-
ductivity, denoted as SCS �for strongly correlated supercon-
ductivity, see below� in the figure, just around the Mott tran-
sition. The symmetry of the order parameter is that of Eq.
�4�. Superconductivity even extends for U�Uc within a fi-
nite doping interval and is preceded by a pseudogap metal
and followed, at larger doping, by a more conventional nor-
mal metal; see Fig. 2. We emphasize that the discreteness of
the spectra obtained in exact diagonalization does not allow
us to unambiguously identify the pseudogap region, yet the
results clearly show the evolution from one kind of normal
state into the other, as already shown in Ref. 18.

The strength of pairing is also surprising. In Fig. 3 we
draw the values of the superconducting gap � at half filling
as a function of U /W, Fig. 3�a�, and at U=0.92 W as a
function of doping, Fig. 3�b�. In Fig. 3�a� we also show on a
smaller scale the same quantity in the BCS-like region for
small U�2J. The latter is exponentially small, in agreement
with the BCS estimate ��0.5W exp�−W /8J��2�10−4W,
almost two orders of magnitude smaller that the values at-
tained in the superconducting region around the Mott insula-
tor.

This superconducting phase that reemerges with strength-
ened pairing just before the Mott transition was named in
Ref. 23 strongly correlated superconductivity to emphasize
its peculiar properties with respect to conventional BCS su-
perconductors. Indeed, in addition to the large value of the
gap in spite of the tiny attraction J=0.05 W, other features
characterize SCS. In Fig. 4�a� we compare the values at half
filling of the Drude weight 	zero-frequency contribution to
the optical conductivity ��
�
 in the SCS phase and in what
could be regarded as the normal phase, namely, the meta-
stable solution obtained within DMFT by preventing gauge
symmetry breaking. We note that the onset of superconduc-
tivity is accompanied by an increase of Drude weight, unlike
what happens in a BCS superconductor. Remarkably, while
the SCS Drude weight vanishes only at the Mott transition,
the weight of the normal solution vanishes for a smaller U
when the zero-frequency spectral weight goes to zero, sug-

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
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FIG. 2. �Color online� DMFT phase diagram of the model Eq.
�1� as a function of U /W and doping �.
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FIG. 3. �Color online� Superconducting gap at half filling as a
function of U /W �a�, and for U=0.92 W as a function of doping
away from half filling �b�. The inset in �a� shows the gap at weak U
on an enlarged scale.
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FIG. 4. �Color online� �a� Drude weight at half filling as a func-
tion of U /W. In the SCS region is also shown the Drude weight of
the metastable normal solution, zoomed in the inset. �b� Drude
weight at U=0.92 W as a function of doping.
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gesting the opening of the pseudogap. This semiconducting
normal phase is metastable at half filling, where the stable
zero-temperature phase is superconducting, but it is stabi-
lized away from half filling as shown in the phase diagram of
Fig. 2. Here, doping seems to have the same effect as in
semiconductors, leading to a Drude weight linearly increas-
ing with the number of holes, reported in Fig. 4�b�. The
intrusion of SCS leads to a more pronounced increase of
Drude weight which smoothly connects to the normal metal
appearing for larger doping.

A. Fermi-liquid description

Since the stable metallic phases at small U /W at half fill-
ing, or at large doping away from half filling, do not show
any particular anomaly, a Landau Fermi-liquid scenario is
expected to be applicable in understanding how supercon-
ductivity can emerge in spite of the fact that the bare scat-
tering amplitude in the Cooper channel is repulsive. The
Fermi-liquid behavior is indeed confirmed by the regular
self-energies calculated by DMFT. Within perturbation
theory, the effect of interaction on the low-energy single-
particle properties can be absorbed into the so-called wave-
function renormalization or quasiparticle residue Z defined
by

1

Z
= 1 −  ���i
n,kF�

�i
n
�


n→0
, �9�

where ��i
n ,kF� is the single-particle self-energy in Matsub-
ara frequencies at the Fermi momentum, and by the reduc-
tion of the quasiparticle bandwidth W→W��W,

W�

W
= Z�1 +

1

vF
0  ���0,k�

�k �
k=kF

� , �10�

where vF
0 is the bare Fermi velocity. Z can be regarded as the

component of the total single-particle spectral weight that is
carried by coherent quasiparticle excitations. In general
Z�W� /W, the equality holding only in infinite-coordination
lattices where the self-energy is momentum independent,
��i
n ,k����i
n�.31

Within Landau theory, considering a generic scattering
channel with bare amplitude �, the renormalized value can
be written as

�� = Z2��� , �11�

where �� includes the so-called vertex corrections. Ap-
proaching an interaction-driven Mott transition, U→Uc, the
quasiparticle residue vanishes Z�Uc−U→0, but the behav-
ior of �� in different channels can be totally different due to
the different relevance of vertex corrections. Physical intu-
ition suggests that the proximity to a Mott transition affects
primarily charge fluctuations, which are severely suppressed,
but it does not equally influence the way in which the charge
is distributed between different spin and orbital states. In-
deed, the localization of the charge leads to the formation of
local moments and reflects an enhancement of the spin and
orbital responses. This suggests that, while vertex corrections
in the spin- and orbital-density channels can compensate the

vanishing Z, the same cancellation does not take place in the
charge-density channel. Following this observation, we ar-
gued in Ref. 23 that the on-site repulsion U and exchange J
undergo different renormalization as the Mott insulator is
approached. In particular, since the exchange term J only
controls the multiplet splitting at fixed charge, it is not af-
fected by the approach to the Mott transition; hence J→J�

�J. On the contrary, the residual quasiparticle repulsion is
substantially weakened near a Mott transition, since most
correlation effects are already built into the small Z. On the
basis of the DMFT behavior of the double occupancy in the
single-band Hubbard model,17 it was speculated in Ref. 23
that U→U��ZU. This assumption would result in the an-
satz for the quasiparticle scattering amplitude in the Cooper
channel 4

A = U − 2J → A� = U� − 2J� � ZU − 2J . �12�

Should Eq. �12� be correct, it would imply that A�, which for
small U�2J is repulsive in agreement with perturbation
theory, must necessarily turn attractive sufficiently close to
the Mott transition, where Z goes to zero. In Fig. 5 we show
A� given by Eq. �12� with Z extracted according to Eq. �9�
from the normal-state DMFT solution. We note that this es-
timate for A� changes from repulsive to attractive very close
to the point where a stable superconducting solution is
found, supporting the validity of �12�. Moreover, the expres-
sion �12� provides an explanation for the large strength of
pairing in the SCS phase in comparison with the BCS state.
In fact, as Z→0, a regime in which A��−W�=−ZW is even-
tually reached. Here the quasiparticles experience an attrac-
tion of the same order as their effective bandwidth. This
intermediate regime, bridging between the weak-coupling
BCS limit and the strong-coupling Bose regime, has been
shown to be the optimal situation for superconductivity in
purely attractive models.32,33

According to the above Fermi-liquid arguments, super-
conductivity reemerges before the Mott transition because
our Hamiltonian contains a pairing mechanism whose only
role is to favor the singlet configuration �5� whenever two
electrons are on the same site. For this reason pairing is
strengthened rather than weakened as Mott localization is
approached. A similar phenomenon is not expected to occur

FIG. 5. �Color online� Ansatz for the scattering amplitude A�

=ZU−2J versus U /W using Z extracted from a normal DMFT so-
lution. Also shown is the superconducting gap multiplied by a fac-
tor of 20 for graphic convenience.
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if pairing is mediated by a charge-charge attraction, which
obviously conflicts with the Coulomb repulsion. Notice that
in the present context the origin of J �purely electronic gen-
erated, e.g., by superexchange, or driven by coupling with
Jahn-Teller phonons as in fullerenes21� is not important, the
only relevant point being that it does not compete with U.

IV. INSIGHTS FROM THE IMPURITY MODEL

Although Fermi-liquid theory can be rather safely in-
voked to explain the emergence of superconductivity from
the correlated metal, it has to be eventually abandoned in the
region of coupling which precedes the Mott transition,
where, as we discussed, superconductivity emerges out of a
pseudogap normal phase. This demands an alternative de-
scription able to account for both the Fermi-liquid and non-
Fermi-liquid regimes.

As we introduced in Sec. II, DMFT establishes a corre-
spondence between a lattice model and an impurity model.
The equivalence between the two models is enforced by a
self-consistency condition which contains the information
about the original lattice. The role of the DMFT self-
consistency is absolutely nontrivial: for instance it makes the
impurity Kondo temperature TK vanish at a finite value of the
interaction which signals the Mott transition in the lattice
model, since TK coincides with the renormalized bandwidth
W�=Z W. However, important insights can be gained by the
analysis of the impurity model alone, without imposing the
self-consistency.

The Hamiltonian of the impurity model corresponding to
�1� is

H = − �
k

�
a=1

2

�
�

�kck,a�
† ck,a� + �Vkck,a�

† da� + H.c.�

+
U

2
�nd − 2�2 − 2J�Tx

2 + Ty
2� , �13�

where ck,a�
† and ck,a� are auxiliary fermionic degrees of free-

dom introduced to describe the Weiss field, while da�
† , da�,

nd, and Tx�y��z� are the same operators defined above, but
specialized to the impurity site. The physics of the model is
controlled by three energy scales: U, J and the so-called
hybridization width � defined through

� = �
k

�Vk�2���k� . �14�

The Hamiltonian �13� has been recently studied in Refs.
34–36 by means of numerical renormalization group �NRG�
for a constant hybridization function.37,38 It has been found
that, as a function of U at fixed � and J��, a quantum
phase transition takes place at U=U�, an interaction value
that corresponds to a Kondo temperature TK

� �J. For U
�U�, i.e., TK�TK

� , perfect Kondo screening takes place. On
the contrary, when U�U�, TK�TK

� , the impurity locks into
the singlet configuration

1
�2

�d1↑
† d2↓

† + d2↑
† d1↓

† ��0� , �15�

which does not require any Kondo screening. The critical
point that separates the two phases is similar to that found in
the two impurity Kondo model.39,40 Moreover the critical
point exists also away from particle-hole symmetry, and, re-
markably, it can be accessed even for U�U� by changing
the density away from half filling.35 The single-particle spec-
tral function displays an interesting evolution across the
transition.35 In the Kondo screened phase, the low-frequency
DOS is characterized by a broad resonance around the Fermi
level, on top of which a narrow Kondo peak develops. The
latter shrinks continuously as the critical point is approached,
while the broad resonance stays unaffected, as well as the
high-energy Hubbard bands surrounding the low-energy fea-
tures. At the critical point, the Kondo peak disappears, leav-
ing behind only the broad resonance. In the unscreened
phase, a narrow pseudogap appears inside the broad reso-
nance, whose width grows on moving away from the critical
point. This pseudogap is gradually filled away from particle-
hole symmetry, although, as mentioned, the critical point still
exists. This behavior has been parametrized35 by the follow-
ing ansatz for the low-energy DOS at particle-hole symme-
try:

���� =
1

�
 T+

2

�2 + T+
2 �

T−
2

�2 + T−
2� , �16�

where the plus and minus signs refer to the screened and
unscreened phases, respectively. The energy scale T+
�max�TK ,J� measures the width of the broad resonance,
while T−� �U−U��2 controls the deviation from the fixed
point and sets the width of the Kondo peak in the screened
phase and of the pseudogap in the unscreened one. This
model DOS defines a self-energy that was shown to fit per-
fectly well the numerical data for the impurity model.35 In
particular, the self-energy at small Matsubara frequencies is
Fermi-liquid-like in the Kondo screened phase, ��i
n�
�−i
n, is finite and imaginary at the critical point, ��i
n�
=−i�, and diverges in the unscreened phase, ��i
n��1 / i
n.

The critical point is unstable in several symmetry-
breaking channels,34,40 including the magnetic channel

S1 − S2, �17�

the Cooper channel Eq. �4�, and the hybridization channels

�
�

d1�
† d2�, �

�

d2�
† d1�, �18�

that break the O�2� orbital symmetry. All these channels are
degenerate at the critical point, where the model has an en-
larged SO�7� symmetry.40 When the impurity model contains
explicitly a symmetry-breaking term that couples to one of
the unstable channels, the critical point is washed out and the
phase transition between the Kondo and the local singlet
phase turns into a sharp crossover.35,36 In the meantime, the
relevant perturbation cuts off the non-Fermi-liquid singulari-
ties of the self-energy both at the critical point and in the

SCHIRÓ et al. PHYSICAL REVIEW B 77, 104522 �2008�

104522-6



unscreened phase, so that, at sufficiently low frequency,
��i
n��−i
n is always recovered.36

Since the Kondo temperature TK has to vanish as the Mott
transition is approached, the effective impurity model must
encounter the critical point, TK�J, before the Mott point is
reached. In Ref. 34 it has been speculated that, once a full
DMFT calculation is carried on, the instabilities associated
with the impurity critical point lead because of the self-
consistency condition to a spontaneous symmetry breaking
in a whole region around the critical point along one of the
instability channels. These are the particle-hole channels �17�
and �18�, which correspond to magnetic and orbital ordering,
respectively, and the particle-particle channel �4� which im-
plies superconductivity. This prediction is perfectly compat-
ible with the DMFT phase diagram, Fig. 2. We note that
particle-hole instabilities usually require nesting or other
band-structure singularities that only accidentally occur,
while the Cooper singularity is more ubiquitous. For this
reason, in Ref. 18 we only searched for a superconducting
instability, even though the Bethe lattice with nearest-
neighbor hopping has nesting at half filling.

V. MODELING THE DYNAMICS IN THE NORMAL
PHASES

The analysis of the previous section shows that the critical
point of the impurity model is expected to be always pre-
empted by broken-symmetry phases in the lattice model
treated within DMFT. Nonetheless, it is plausible that the
critical point corresponds to a metastable phase, just as a
normal metal is a metastable phase in the presence of attrac-
tion. Following this idea, we have solved the model �1�, forc-
ing the DMFT self-consistency not to break any symmetry.
The behavior of the self-energy that we obtain �see Fig. 6�
closely recalls that of the impurity model with constant bath
�i.e., without self-consistency� that we just discussed. This
confirms that the impurity critical point corresponds to a
metastable phase in the lattice model and suggests that the
same parametrization Eq. �16� may work in the lattice as
well. Therefore we have assumed for the low-frequency local

Green’s function the following expression, valid in a Bethe
lattice �all energies will be expressed in units of the band-
width W=1�:

G�i
n� =
1

2
�G0 i
n

T+
� � G0 i
n

T−
�� , �19�

where the � sign, T+, and T− have the same meaning as in
Eq. �16�, while

G0�i
n� = 8i
n − sgn�
n��
n
2 +

1

4
� �20�

is the noninteracting local Green’s function. The ansatz �19�
for the Green’s function corresponds to an ansatz for the
self-energy which, through the DMFT self-consistency equa-
tion, becomes

��i
n� = i
n −
1

16
G�i
n� − G�i
n�−1. �21�

In the Fermi-liquid region, where the plus sign has to be used
in �19� and T−�0, the low-frequency self-energy is

��i
n� � i
n − i

n

2
 1

T+
+

1

T−
� + i


n
2

4
 1

T+
−

1

T−
�2

sgn�
n� ,

�22�

corresponding to a regular Fermi-liquid behavior with quasi-
particle residue

Z = 2
T+T−

T+ + T−
. �23�

At the critical point �T−=0�, or for frequencies T−�
n�T+,
the self-energy becomes

��i
n� � i
n − i
3

8
sgn�
n� − i

5
n

4T+
− i

3

4

n

T+
�2

sgn�
n� .

�24�

��i
n� has a finite and sizable imaginary part, implying a
non-Fermi-liquid behavior. The deviations from conventional
Fermi-liquid behavior become even more pronounced in the
unscreened phase, where T−�0 and the minus sign has to be
used in �19�. Here we obtain

��i
n� � i
n −
i

4
n

T+T−

T+ − T−
−

i

4

T+ + T−

T+ − T−
sgn�
n� − i


n

T+ − T−
.

�25�

The divergence of ��i
n� for small 
n leads to a pseudogap
in the DOS, whose behavior at small energy is

���� � 4 1

T−
2 −

1

T+
2��2. �26�

We can check the validity of our ansatz by simply comparing
it with the actual DMFT results obtained using exact diago-
nalization. Fitting these data with �19�, we find a very good
agreement, and we can extract the parameters T+ and T−. The
behavior of the best-fit values of T+ and T− is drawn in Fig.
7 and supports our ansatz, and consequently the relevance of
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FIG. 6. �Color online� i
n−��i
n� versus 
n�0 for different
values of U /W, as obtained by DMFT preventing super-
conductivity.
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the impurity critical point for the lattice model. In the same
figure we report the superconducting gap obtained in DMFT
allowing for gauge-symmetry breaking.

Two things are worth noting in this figure. First, the van-
ishing of T− at U�0.82 W, namely, the location of the meta-
stable critical point, corresponds to the maximum of the su-
perconducting gap once gauge symmetry breaking is
allowed, in accordance with the prediction based on the
analysis of the impurity model.34 At the metastable critical
point, the only remaining energy scale is T+, which therefore
determines the maximum value of the superconducting gap
�. Second, the Mott transition occurs within the pseudogap
region when T−=T+. In other words, the pseudogap gradually
widens as U increases from the T−=0 point and, at the same
time, the total spectral weight of the low-energy part, given
by �T+−T−� according to Eq. �19�, diminishes until it disap-
pears, when T−=T+.

Although we solved the DMFT at zero temperature, we
believe that the T=0 energy scales will at least approxi-
mately determine the finite-temperature behavior of the
model. We can therefore speculate that the energy scales T+,
T−, and � will be reflected in analogous temperature scales,
leading to the scenario drawn in Fig. 1 and discussed in the
Introduction. In this perspective, even though the critical re-
gion around T−=0 is not stable at T=0, and in fact in our
calculation is replaced by superconductivity, it should be-
come accessible by raising the temperature T when T+�T
�max�T− ,Tc�, denoted as NFL �non-Fermi-liquid� in the fig-
ure. If we follow a path in the T-U space that avoids the
bell-shaped superconducting region, we must find a cross-
over from a correlated Fermi-liquid phase to a pseudogap
state passing through the NFL region.

Finally, the region above T+ has a simple interpretation in
the impurity model, where it corresponds to the local mo-
ment regime above the Kondo temperature. In the lattice
model, it presumably translates into a phase with very poor
lattice coherence, although its precise properties are difficult
to foresee in the absence of actual finite-T calculations.

VI. MODELING THE DYNAMICS IN THE
SUPERCONDUCTING PHASE

An important result for the impurity model is that, as soon
as one of the relevant symmetry-breaking perturbations is

introduced, such as, e.g., the hybridization �18�, suddenly the
non-Fermi-liquid behavior of the self-energy is replaced by a
standard Fermi-liquid one. In this case the low-frequency
self-energy at the critical point changes from an imaginary
constant to a conventional linearly vanishing function.36 We
can therefore expect a similar regularization to occur as soon
as superconductivity is allowed in the lattice model. This
expectation is closely reminiscent of the mechanism taking
place when s-wave superconductivity is established in a dis-
ordered metal. Here scattering off impurities makes the qua-
siparticle lifetime 1 /� finite, which means that the normal-
state self-energy is finite and imaginary at zero frequency,
just as in the above discussed non-Fermi-liquid phase. Fol-
lowing Abrikosov, Gor’kov, and Dzyaloshinskii,41 we write
the self-energy as a 2�2 matrix whose diagonal entry �11 is
the normal component, and whose off-diagonal entry �12 is
the anomalous �superconducting� contribution. We define the
function ��i
n� in the normal phase according to

i
n − �11�i
n� = i
n +
i

2�
sgn�
n� � i
n��i
n� . �27�

The onset of superconductivity regularizes this normal-state
anomaly, giving rise to a normal self-energy �11 linear below
a low-energy scale � and, at the same time, the anomalous
self-energy �12 gets strongly enhanced with respect to that of
a clean superconductor, namely,41

i
n − �11�i
n� = i
n��i�
n
2 + �2� , �28�

�12�i
n� = ���i�
n
2 + �2� , �29�

� being the same function defined in Eq. �27�. The two
above equations express an important physical property,
namely, that nonmagnetic disorder is a non-pair-breaking
perturbation in a BCS superconductor. Indeed Eqs. �28� and
�29� imply a perfect cancellation in the s-wave Cooper chan-
nel between the wave-function renormalization �the self-
energy� and the vertex corrections brought by the impurities.
This leads to the well-known “Anderson theorem,”42 stating
that the value of Tc is independent of the concentration of
nonmagnetic impurities, provided the latter is low. This re-
sult follows immediately from the BCS gap equation in the
presence of an attractive coupling41 �,

1 = �T�
i
n

�
k

��i�
n
2 + �2�

�
n
2 + �2���i�
n

2 + �2� + �k
2

. �30�

Tc is determined by solving �30� with �=0, namely, ��i
n�
=1+1 / �2��
n��. One readily realizes that, summing over mo-
mentum first, ��i
n� disappears from the equation in the
infinite-bandwidth limit, leading to the same logarithmically
singular sum over Matsubara frequencies as in the absence of
disorder.

We discussed previously that the emergence of SCS can
be explained by assuming that vertex corrections compensate
exactly for the strong wave-function renormalization. It is
then tempting to further pursue the analogy with dirty s-wave
superconductors. That is, we define
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FIG. 7. �Color online� Fitting parameters T+ and T− of the
DMFT normal self-energy with the expression Eq. �21� using for
the impurity Green’s function Eq. �19�. We also draw the DMFT
superconducting gap when gauge symmetry breaking is allowed.
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i
n − �11�i
n� �
i
n

Z�i
n�
, �31�

where �11�i
n� is the self-energy of the metastable normal
solution, using instead of ��i
n� the more conventional no-
tation Z�i
n� for the frequency-dependent wave-function
renormalization. We then assume that allowing for supercon-
ductivity leads to diagonal, �11, and off-diagonal, �12, self-
energy matrix elements, in the Nambu-spinor notation, given
as in �28� and �29� by

i
n − �11�i
n� =
i
n

Z�i�
n
2 + �2�

, �32�

�12�i
n� =
�

Z�i�
n
2 + �2�

, �33�

where � is the cutoff scale introduced by superconductivity.
It follows immediately that the introduction of � restores a
conventional Fermi-liquid behavior, �11�−i
n, not only
when T−=0 and Z�i
n���
n�, but also in the pseudogap re-
gime where Z�i
n���
n�2. Within this picture, superconduc-
tivity regularizes the low-frequency behavior of the normal-
state self-energy both at the critical point, which is actually
avoided by the onset of symmetry breaking, and in the
pseudogapped phase whose singularity is cut off by �. As a
consequence of such regularization, the low-energy
pseudogap in the spectral function should change within the
superconducting phase into rather sharp quasiparticle peaks
at the edge of the gap, which finally disappears as the Mott
insulator is approached.

Unfortunately a thorough comparison of numerical
DMFT data with �32� and �33� is a very hard task, because
the phenomena we want to observe involve the extremely
small-frequency range �where the Fermi-liquid behavior
would be recovered�, which is really hard to study with
present impurity solvers. For this reason, since the idea we
propose is quite general, we have decided to verify the va-
lidity of our ansatz for the impurity model without self-
consistency, postponing some selected DMFT comparison to
the end of the section.

An important difference is that no spontaneous symmetry
breaking is possible for the impurity model without self-
consistency. Therefore, in order to check the validity of �32�
and �33�, one has to add explicitly a symmetry-breaking per-
turbation to the Hamiltonian �13�. In Refs. 35 and 36 the
impurity model

H = − �
k

�
a=1

2

�
�

�kck,a�
† ck,a� + �Vkck,a�

† da� + H.c.�

− t��
�

�d1�
† d2� + H.c.� �34�

was considered with U=8, t�=0.05, and different �’s, in
units of half the conduction bandwidth. In this model the role
of the hybridization t� is twofold. On one hand it generates
an exchange J�=4t�

2 /U able to drive the model through the
critical point. At the same time, t� breaks the O�2� orbital
symmetry, turning the quantum phase transition into a cross-

over which has been shown to be quite sharp.35,36 We note
that, at particle-hole symmetry, the two channels �4� and �18�
are perfectly equivalent, being related by the particle-hole
transformation

d2↑ → d2↓
† , d2↓ → − d2↑

† , �35�

ck2↑ → − ck�2↓
† , ck2↓ → ck�2↑

† , �36�

where k and k� are particle-hole partners, �k=−�k�
, and

Vk�
=Vk

�. Therefore we can simply borrow the NRG data of
Refs. 35 and 36 and adapt them to our case of a supercon-
ducting symmetry-breaking term. In Fig. 8 we show the
NRG data against our fit using Eqs. �32� and �33� with the
normal self-energy that follows from the model DOS �16�.
The fitting parameters T+, T−, and � are shown as functions
of � in Fig. 9.43 We take the validity of Eqs. �32� and �33� for
the impurity model as a strong support of their validity also
in the lattice model even deep inside the pseudogap phase
where, as previously mentioned, our numerical data have not
enough precision to reveal the very low-frequency structure.
An interesting feature of the off-diagonal self-energy in the
impurity model is the strong frequency dependence, espe-
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cially in the pseudogap region, where �12 is extremely
peaked at very low frequencies. This is true also in the actual
DMFT calculation. In Fig. 10 we plot, for different U’s
around the top of the SCS region, U�0.82 W, the
frequency-dependent superconducting gap, defined by

��i
n� =

i
n�
12

�i
n�

i
n − �
11

�i
n�
, �37�

whose zero-frequency extrapolation is the gap shown in Fig.
3. We note the rapid rise of ��i
n� below a frequency of
order T+, confirming our prediction that, around its maxi-
mum, the gap is controlled by a single energy scale, T+.
Therefore, even though the attraction J is instantaneous,
strong retardation effects develop to avoid the large repulsion
U and stabilize superconductivity. It is just this strong fre-
quency dependence of the superconducting gap �37� that
marks the difference between a conventional Bose-Einstein
condensation of preformed local pairs and our SCS phase,
where pairs are highly nonlocal in time; see Fig. 10. We also
note that a characteristic energy scale shows up in the dy-
namical gap function even if our model does not involve any
exchange of bosons with a typical energy scale �at least not
in an obvious way�, as has been instead proposed for the
two-dimensional Hubbard model.44

Finally, we conclude this section by discussing the possi-
bility of writing down a gap equation like Eq. �30� for our
model in the SCS phase, which remains an open and sugges-
tive issue. Starting from the Fermi-liquid side, our DMFT
results seem to suggest that pairing essentially involves only
the strongly renormalized quasiparticles. In this case a natu-
ral candidate for a gap equation would be

� = A�T�
n

�
k

Fqp�i
n,k� , �38�

where A� is the renormalized scattering amplitude in the
Cooper channel defined through Eq. �12� while Fqp is the
quasiparticle anomalous Green’s function,

Fqp =
1

Z
F�i
n,�k� . �39�

A first analysis shows that Eq. �38� correctly reproduces the
order of magnitude of � also in the strongly correlated re-
gime. This encourages us to use it to estimate the effective
attraction A� such that Eq. �38� gives the actual DMFT value
of �. We use �38� and �39� also in the pseudogap state, where
the Fermi-liquid ansatz for A�, Eq. �12�, is not valid. Here Z
is taken to be the low-energy spectral weight within a win-
dow of the order 4J around the Fermi level. A� that we
obtain in this way, shown in Fig. 11, is quite smooth as a
function of U and it stays relatively small, in the range be-
tween 0.01 and 0.02, up to the Mott transition. This shows
that, even in the pseudogap regime, Eq. �38� can be satisfied
without requiring a big coupling constant.

VII. DISCUSSION AND CONCLUSIONS

It is common wisdom that the emergence of local mo-
ments out of the incipient Mott localization must necessarily
lead to an enhanced magnetic response and eventually to a
magnetic order that may appear already in the metallic phase
adjacent to the Mott insulator. It is equally conceivable that,
under these circumstances, a system may become easily un-
stable to lattice distortions. Moreover, on the brink of charge
localization, the orbital momentum also, quenched by the
hopping deep in the metallic phase, may reemerge, making
spin-orbit coupling effective as if the atoms were isolated.
This is the typical phenomenology of magnetic Mott insula-
tors exemplified by the prototype Mott-Hubbard system,
V2O3.45,46 These properties can be interpreted within a Lan-
dau Fermi-liquid framework only by invoking an almost per-
fect cancellation between the large wave-function renormal-
ization associated with the Mott transition and the vertex
corrections in particular channels. Physical intuition suggests
that such channels should be primarily those acting on de-
grees of freedom orthogonal to charge, like spin and orbital
momentum.

However, while the above arguments are quite natural, if
not obvious, for particle-hole instabilities like magnetism,
they sound much less trivial in connection with supercon-
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ducting particle-particle instabilities. The main difference is
that superconductivity implies phase coherence, which can-
not survive charge localization. Nevertheless, while phase
coherence requires pairing, the opposite is not true, since a
Mott insulator can be formed by incoherent pairs. An ex-
ample is a valence-bond crystal formed by an ordered array
of tightly bound singlets on nearest-neighbor bonds, and,
seemingly, also a Mott insulator made of resonating valence
bonds—the RVB scenario originally proposed by Anderson16

for high-Tc superconductors.
Another possibility is to form local singlets by exploiting

the orbital degrees of freedom, which play a role similar to
the bonds of the previous examples. This is realized in our
model �1�, and in the model for fullerenes. In the fullerene
family, tetravalent alkali-metal-doped C60 may be regarded
as the parent Mott insulating compound22,23 that turns super-
conducting upon doping, the trivalent materials. The former
compounds are indeed nonmagnetic Mott insulators where
the four electrons occupying the LUMO of each molecule
bind into a nondegenerate spin-singlet configuration because
of the Jahn-Teller effect.47

In all these examples, the pairing implicit in the Mott state
is perfectly compatible with strong repulsion; hence it is not
surprising that, on moving away from the Mott insulator,
superconductivity appears. The general conditions are eluci-
dated by our analysis: pairing must correlate degrees of free-
dom orthogonal to charge. For instance, in the t-J model for
cuprates, pairing is provided by spin superexchange, which
is unaffected by the strong-repulsion constraint of no double
occupancy, while it competes with hopping. The former fa-
vors configurations in which two singly occupied nearest-
neighbor sites are bound into a singlet state, while the latter
prefers a democratic occupancy, in which the singlet is
equally as probable as any of the triplet states. Also, in our
two-orbital model �1� close to the Mott transition, J com-
petes with hopping rather than U. At half filling the hopping
favors an equal occupation of all the states with two elec-
trons per site, while J breaks this degeneracy in favor of the
singlet configuration �5�. Just the same competition emerges
in the impurity model �13� between the Kondo temperature
and J. The reason that J� t eventually prevails in all the
above examples is that the hopping suffers from a very se-
vere wave-function renormalization close to a Mott transi-
tion, while J does not.

From these observations it appears evident that the phys-
ics of our model �1� and that of the t-J model for cuprates
within the RVB scenario14,16,19,20 share common features; our
inverted exchange playing on site a similar role as the
nearest-neighbor exchange in the t-J model. Quite obviously
J being on site or on a link is expected to introduce relevant
differences as far as the momentum structure is concerned
�the most evident being s-wave versus d-wave pairing�.
There are, however, other relevant differences, at least re-
garding the interpretation of the various phases, In the RVB
scenario uncovered by slave-boson14,19,20,48 and
variational49–53 approaches, a lot of emphasis is placed on the
pseudogap regime close to the Mott transition to explain
superconductivity.14 In our model, superconductivity is in-
stead the low-temperature response to the instability in the
crossover region between the pseudogap and the Fermi liq-

uid. Another important difference is that our pseudogap state
is a stable thermodynamic phase with zero entropy at zero
temperature, while in the RVB scenario it appears as a fluc-
tuating mixture of competing orders, unable to survive down
to zero temperature.

Our results also look different from those of QCP theories
for the cuprates.8–10 Within the QCP approach, superconduc-
tivity arises because of the critical fluctuations around a true
quantum critical point that separates stable zero-temperature
phases. This critical point may even be inaccessible in the
physical space of parameters, and exist only in a hypothetical
enlarged space, yet it is believed to influence the physical
system not only at finite but also down to zero temperature.
In contrast, in model �1� the normal Fermi-liquid metal, the
pseudogap phase, the superconductor and other possible
symmetry-broken phases are all equally legitimate outcomes
of an underlying competition that reveals itself only in the
high-temperature non-Fermi-liquid crossover region, NFL in
Fig. 7. From this point of view, the difference between the
phase diagram Fig. 7 and the QCP scenario is the same one
emphasized recently by Anderson.54 An obvious and perti-
nent criticism of our claim is that, upon applying a suffi-
ciently high magnetic field able to completely wash out su-
perconductivity, the unstable critical region should move
down to zero temperature and transform into a true quantum
critical point, thus recovering the QCP scenario. We note,
however, that, at its maximum, the superconducting gap is
controlled only by the energy scale T+, which is also the
bandwidth of the low-energy incoherent excitations. For this
reason we believe, although we cannot prove it, that a mag-
netic field so strong as to completely suppress superconduc-
tivity would drive the model into a phase with very poor
lattice coherence, rather than revealing the critical point.

We believe that our results provide a different perspective
about the relation between a pseudogap and superconductiv-
ity, which crucially differs from previous approaches. Rather
than being in competition, the pseudogap and the supercon-
ducting gap turn out to be much more “compatible” with one
another than in most theoretical approaches that we are
aware of. A central aspect, discussed in Sec. VI, is that the
large normal self-energy responsible for the pseudogap state
is regularized by the onset of superconductivity, in contrast
with approaches in which the same �highly anomalous� nor-
mal self-energy is assumed in the normal and superconduct-
ing states.55 Moreover, we have shown that in model �1�
there is no need for a large coupling constant to overcome
the lack of low-energy density of states in the normal phase,
as happens instead in approaches where pairing takes place
starting from a normal state with mean-field-like
pseudogaps.56,57

Another important outcome of our calculation is the natu-
ral appearance of two energy gaps with different behaviors as
a function of the distance from the Mott insulator �see Fig.
1�: the pseudogap scale T− increases on approaching the
Mott state, where it is largest, while the superconducting
coherence scale vanishes as the Mott insulator is approached.
This is clearly reminiscent of the two energy scales �gaps�
observed in the cuprates.58,59

Finally, we want to emphasize that the physics we have
unraveled seems to be more general than the specific toy
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model �1�. Indeed, we have shown that the emergence of a
reinforced superconductivity upon approaching the Mott
transition can be explained in the model �1� by simple Fermi-
liquid arguments that do not depend on the specific model.
They simply state that any scattering channel involving de-
grees of freedom orthogonal to charge should strengthen near
a Mott transition, irrespective of whether it is a particle-
particle or a particle-hole channel. This is obvious, for in-
stance, in one dimension because of the dynamical separa-
tion of the charge from the other degrees of freedom, and
explains why the phase diagram of �1� in one dimension does
not differ qualitatively from Fig. 7.28 In addition, the
impurity-model analogy, which we have exploited in this
work, indicates that some kind of pseudogap phase—the
bulk counterpart of an impurity unscreened regime—might
be ubiquitous near a Mott transition, especially if this transi-
tion is continuous. Indeed, it is obvious that a metal should
suppress spectral weight around the chemical potential to
smoothly connect to a realistic zero-entropy insulator, and, in

the absence of symmetry breaking, we do not see any other
way but opening a pseudogap. This would in turn imply also
the existence of a high-temperature crossover regime that
separates the Fermi-liquid phase from the pseudogap one and
actually contains the seeds of the symmetry-broken phase
that eventually emerges at low temperature.36 However, it
often happens that the Mott transition is first order, in par-
ticular when accompanied by a lattice distortion, as in
V2O3.45 In this case both the pseudogap and the critical
crossover regions might become inaccessible and a discon-
tinuous transition might occur directly from the Fermi-liquid
metal to the Mott insulator.
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